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FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-~
tion, Goddard Space Flight Center (NASA/GSFC) and created
for the purpose of investiéating the effectiveness of
software engineering technologies when applied to the
development of applications software. The SEL was created
in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document. A version of this document was
also issued as Computer Sciences Corporation document
CsSC/T™M~81/6222.

The primary contributor to this document is
Arthur Green (Computer Sciences Corporation)
Other contributors include

William Decker (Computer Sciences Corporation)
Frank McGarry (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Frank E. McGarry

Code 582.1

NASA/GSFC

Greenbelt, Marvland 20771
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ABSTRACT

This document examines the collection of software engineer-
ing data in the Goddard Space Flight Center (GSFC) Software
Engineering Laboratory (SEL). The current manual collection

of data via software engineering forms is evaluated with re-

gard to what can and cannot be automated. Top level func-=
tional requirements for an automated system for the collection

of software development statistics are presented.
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SECTION 1 - INTRODUCTION

Software engineering (SE) is a discipline that seeks to pro-
vide a more scientific approach to computer software design
and development. In order to learn how to develop software
more scientifically in the Goddard Space Flight Center (GSFC)
Mission Support Computing and Analysis Division (Code 580)
environment, the Software Engineering Laboratory (SEL) was
created to measure and evaluate the effects of various
methodologies in current use (Reference 1).

The stated goals of the SEL can be broken down into the fol-

lowing three major categories:
1. Monitor current project progress

2. Collect SE data to determine how software is being

developed

3. Evaluate the effects of various methodologies across
several GSFC Code 580 projects, with regard to their
impact on software development

One of these major functions is the collection and analysis
of SE data. During the last 5 years, the SEL has attempted
to collect SE data pertinent to the design and development
of several major software systems. The goal of this study
has been to determine areas where time and effort has been
unproductive and where improved methodologies might be em-

ployed to produce a better product.

The data collection instrument consists primarily of a set

of six software engineering forms which are filled out on

a regular basis by programmers and systems designers involved
in a given development project. The forms are supplemented
by computer accounting information, code analyzers, personal
interviews, and subjective management data.

1-1
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i To date, the data collection and analysis have proven to be
l costly, time consuming, and subject to inaccuracieé. This
is primarily due to the manual collection and preparation
of the data for entry into a data base management system
(DBAM) which performs report generation but very little an-
alysis. '

The manual data collection process is a slow and tedious

_é process in which many people (including managers, program-
mers, analysts, and support personnel) must complete forms,

yyyy validate the data, and enter SE data into the data base.

There is no feedback mechanism for analyzing the data and

folding the results back into the projects. Also, human

factors, such as programmer motivation (or lack of it), play

an important part in the accuracy of the data collected.

Because of these drawbacks to manual data collection, auto-

"matic extraction of SE data in the SEL would be very desir-

able. Even though validation of the collected data would

be required, the time currently spent filling out the forms
and entering the data would be saved; since the data would

be collected and stored on the same machine that the develop-

ment effort is using. There would be virtually no influence

b i | S

from human factors on the data collected in an automatic

} mode.

The purpose of this document is to analyze this possibility.
wz Section 2 gives an overview of the current SEL data collec-
tion process. Section 3 describes the SEL data that could
be automatically collected, and Section 4 discusses the types
of SEL data that could not be extracted automatically. Some
top-level functional requirements for an online automated

data collection system are given in Section 5, and Section 6

) presents the conclusions and recommendations resulting from
l this study.
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SECTION 2 - OVERVIEW OF THE SEL DATA COLLECTION PROCESS

This section gives an overview of the data collection proc-
ess followed in the SEL. Included in the overview is a brief
description of the software engineering forms used and the
relationship of data collection to the software development
process. Also given is a brief discussion of some special

consiflerations in automating the SEL data collection.
2.1 SEL FORMS

The data collection system which has evolved in the SEL con-~
sists of a set of six reporting forms which are completed
at various stages of software development. These forms are

shown in Appendix A and are summarized below.

® General Project Summary--This form defines the scope

of the software development problem.

e Component Summary--This form describes the structure
of each component (e.g., module or routine) of the

software system under study.

® Resource Summary--This form provides manpower charges

and computer usage statistics.

° Component Status Report--~This form details the activ-
itites of the programmer/designer on each component

of the software system.

o Run Analysis~-This form provides the results of a

given program execution.

e Change Report--This form gives the reason for and a
description of each change to the software system.

As mentioned in Section 1, these forms are filled out on a
regular basis by the programmers and systems designers in-
volved in a given development project. (See Section 2.1 of
Reference 2 for details of the SEL data collection and the

software engineering forms.)

2-1
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2.2 SEL DATA COLLECTION AND THE SOFTWARE DEVELOPMEN
PROCESS ’

The SEL data collection procedure attempts to measure the
total resources of the software development process as it
exists in the SEL environment. (See Figure 2-1 for an il-
lustration of a typical SEL software development life cycle.)
In order for the data collection procedure to be effective,
it must monitor development activities throughout the entire
software life cycle and not just during design and implemen-
tation.

The software development process is divided into a number

of serial and distinct functions linked by informal, loosely
coupled communication channels between the requirements,
design, coding, testing, integration, operation, and main-
tenance phases. Most of the focus to date has been on mon-
itoring the requirements, coding, and testing phases, with
very little effort directed to monitoring the design and

maintenance phases.

The existing component phases need to be connected in a more
systematic manner. In this way, each area of the development
process can be classified according to the type and amount of
resources it requires. If an accurate profile of development
activities is to be obtained, items such as the programmer's/
designer's use of core, central processing unit (CPU) time,
and input/output (I/0) activity must be logged during the
activity. The types and number of interrupts initiated by
the user and their frequency give some indication of devel-
opment activities in an interactive environment, but they

are inadequate when batch procedures are evoked.

2.3 SPECIAL CONSIDERATIONS IN AUTOMATING SE DATA COLLECTION

The degree of automation of data collection is dependent on

the following: (1) the sources of data (real and potential)

S
ORIGINAL PAGE |
OF POOR QUAUTY



910kD 2317 juswdoTsAdg SIBMIIOS

THS TeotrdAl

*T-¢ 2anbtg

!

ONILSIL NOLLYIAWIS SISATYNY | sisavnv anv INIWIDNVHNI
anv oUVInWIS || SISAIvN ONILSIL NV
NOLLVHDALNI W31SAS JONVNILNIVIN
O
m
@
0]
z
1300W z
a3nviaa m
O
w
>
(o]
~
Y
WA NDIS3g HONOUHLYTVM NDISIO o NOLLINI43Q
o a31Iv13a noisia  [¢ 13AIT-d0L siNawauinoay [¢ W37180Hd

oy
faf o
O <
<< 2D
o o
-l O
=

=8
mp
Z .
ol e
o™

i

~




and (2) the level of system support to be given to the de-
signers and developers of an automated system. Ideélly, the
data collection should be done at the highest system level
possible, rather than as some invoked procedure or called
application system. This ensures the uniform application of

data collection for all users.

Another special consideration in automating SEL data collec-
tion is the case of subjective data. Because software de-
velopment is primarily a human activity, certain types of
subjective information are desirable. However, it is nec-
essary to decouple the subjective data from the automated
collection process or, where possible, to restate the goals
so that they can be specified objectively. (Subjective data

are discussed further in Section 4.)

2-4 PAGE 15
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SECTION 3 - SEL DATA SOURCES FOR AUTOMATIC EXTRACTION

One of the goals of this document is to define the type of
SE data that can be collected automatically in the SEL. This

section discusses those types of data.

The computers available to SEL users are the Digital Equip-
ment Corporation (DEC) PDP-11/70 and VAX-11/780. These com-
puters are rich in sources of data in their own right. 1In
addition, several software tools and utilities already exist
in the SEL which provide other sources of SE data. Table 3-1
gives a lengthy list of current and potential sources of
online SE data in the SEL. The remainder of this section
summarizes the currently available sources, in some cases
providing examples and brief descriptions.

The types of data which could be collected automatically are

broken down into the following categories:

Accounting information

Keyboard monitor

VAX object module analyzer

Requirements analysis tools (MEDL-R, PSL/PSA)
Programmer workbench

Text editors

Program Design Language (PDL)

Utilities

Compiler and linker statistics

FORTRAN Static Source Code Analyzer (SAP)

3.1 ACCOUNTING INFORMATION

Accounting routines generally provide information about re-
source utilization (such as CPU and I/0 usage, direct-access
volﬁme usage, and page faults) because their primary purpose
is to provide a basis for billing projects. However, most
systems allow for user-written accounting routines which col-

lect data for later analysis.

3-1



Table 3-1. Sources of Online Software Engineering Data

1. Compiler/asembler statistics (number and type of coding
error)

. Linker/task builder

. Online debugging tools (ODT)

2
3
4. Accounting files
5

- . Software engineering tools (e.g., PSL/PSA, MEDL-R, CSMR,
i FINREP, MARS) '

6. System error log
f\; . Overlay descriptor files (i.e., who calls whom)

8. Automated Program Design Languages (e.g., Caine, Faber,
and Gordon)

¢§ 9. Text editors (e.g., 0ODC)

10. Keyboard monitors (examine each keyboard entry for soft-
”1 ware engineering information)

11. Programmer workbench

12. Performance measurement and monitoring (e.g., Boole and

} Babbage)
13. Login/logout information
X 14. System management records
15. System and user-developed utilities (e.g., PIP, COPY,
DIFF)
_5 16. Financial tapes

17. User directory information (good source of change infor-
g mation)

18. Source analyzers (e.g., SAP)

19. Resource estimators (e.g., Price S, Doty, SLIM, GRC)
20. System services (SYSSGETJPI, GETTSK)

21. Error trapping mechanisms (exit handlers)

22. Complexity functions (e.g., Halstead measures)

23. Maintenance procedures

24. Data bases

25. Configuration management systems (CAT)
26. Formal test procedures
e 27. Dump/trace facilities

28. Cross reference programs

3~-2 E 1%
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Since the interface with the system already exists on both
the SEL PDP-11/70 and VAX-11/780 computers, this area pro-
vides one of the most reliable and easily implemented methods
of obtaining resource utilization information on a project-
by-project basis. Data set information is already recorded
whenever a file is opened, scratched, renamed, closed, or
processed by end of volume. A SEL enriched accounting pro-
cedure could form the basis around which a more comprehensive

and elaborate data collection scheme might be built.

The types of information currently available in the VAX-11/780
accounting file are shown in Figures 3-1 and 3-2. Similar
types of information are available on the PDP-11/70.

3.2 KEYBOARD MONITOR

Both the VAX-11/780 and the PDP-11/70 provide collections of
routines which can be linked with user programs to provide
the capability of processing command lines dynamically. The

system facilities include, for example, the following:

Routine

Name Description Function

GCML Get command line Retrieves keyboard
. input

CsT Command string inter- Takes command lines
polator from the GCML input

buffer and parses them

This set of software can be used to develop keyboard monitors
that examine each line entered at a terminal for SE-related
data. When it exists, the SE data would be extracted and
stored for later processing and analysis. Because of the
high volume of data obtained in this manner, rigorous screen-
ing and filtering techniques might be required to extract
pertinent SE data. It is, however, an area that warrants

further investigation.
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11.
12.
13.

14.

15.
16.
17.
18.
19.
20.

Message type
Message length
Final exit status

Process identification
(PID)

Job identification
Termination time
Account name string
User name string

CPU time in 10 ms units
Total page faults

Peak paging file usage
Peak working set size

Count of buffered I/0
operations

Count of direct I/0
operations

Count of volumes mounted
Login time
PID of subprocess owner

Termination message length

Job name (batch)
Queue name

21.
22.
23.
24.
25.
26.
27.

28.
29.
30.
31.
32.

33.
34.
35.

36.
37.
38.

-39.

40.

Symbiont page count
Symbiont QIO count
Symbiont GET count
Time job:was queued
Name of print job

Name of print queue

Length of print accounting
record

User message area

Job termination

Batch job termination
Interactive job information

Login failure process
termination ‘

Print job accounting
Inserted message

Insert message into
accounting file

Create a new account file
Enable accounting

Disable accounting

Enable selection accounting
Disable selection accounting

Figure 3-~1. VAX Accounting File and Termination
Message Contents
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3.3 VAX OBJECT MODULE ANALYZER

The VAX object module analyzer (ANALYZE) provides a‘descrip—
tion of the contents of an object file or the symbolic infor-

mation appended to a shareable image file. 1In describing
the records, ANALYZE also identifies errors if they exist.

This information is less amenable to further analysis, be-

cause its content is sketchier than that given by source
code analysis. It is given here as an additional source of
SE data.

Figure 3-3 presents an example of the output from the ANALYZE

option.

‘3.4 REQUIREMENTS ANALYSIS TOOLS (MEDL-R, PSL/PSA)

Requirements analysis encompasses all aspects of software

development prior to actual system design. The SEL has
conducted some ground-breaking studies in this area by ex-
E amining currently available requirements packages such as

} the Problem Statement Language/Problem Statement Analyzer
(PSL/PSA, Reference 3) and the Multi-Level Expression Design
s Language - Requirements (MEDL-R, Reference 4). Computer-
aided tools such as these can be modified and enhanced to
extract relational and hierarchical data from their associ-

ated data bases.

The basic concepts in automated requirements analysis are

. well documented (see References 5, 6, and 7). Requirements
;i analysis seeks to ensure correctness of the end product,

N unambiguity, consistency, and completeness. If a completely
automated data collection system is to be developed, more
work must be done to refine and/or develop more tools in

this area.

3-6
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STRUCTURE LEVYEL = ¢ ’
MAXIMUM RECORD LEMGTH = 1024
MODULE NAME IS "TSTSQLSMAIN®
MODULE IDENT IS *01°*
CREATION DATE/TIME WAS 18-Auzg-1981 1
LAST FATCH DATE/TIME WAS 18-5us-1981

»

543
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VAX~11 FORTRAN VY2.2-40
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¥
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0 1 2 3 4 S é 7 8 g
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Figure 3-3. Output From the VAX Object
Module Analyzer (ANALYZE)
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3.5 PROGRAMMER WORKBENCH

- The programmer workbench (PWRB) concept'is génerally‘regarded

as a highly specialized computing facility dedicated to sat-
isfying the needs of software developers. 1In principle, it

is a front end which provides a convenient work environment

and a uniform set of programming tools across machine bound-
aries. PWBs have been configured for many diverse hardware

environments and have supported development for many target

computers.

Recently, GSFC Code 580 has embarked upon the development

of phase 1 of a PWB tailored specifically for the Code 580
software development environment (Reference 8). It is sim-
ilar to the well-known Bell Telephone Laboratories PWB/UNIX
(Reference 9). However, because of the continuing need to
collect statistics which accurately describe the SEL environ-
ment, the development of Code 580 PWB phase 2 provides an
excellent opportunity to integrate automated development
with automated data collection. The tools and methods used
in conjunction with the Code 580 PWB should ‘place high

emphasis on SE data collection.

3.6 TEXT EDITORS

Text editors are available in several forms in the SEL VAX/
PDP environments. Editors are one of the primary means by
which data are created and modified in the development of
software. If detailed creation and change information is

to be collected, one viable option is to provide text editors
that have been modified to extract SE data. Modules which
provide summaries of changes made to a given module could
easily be coupled with the Code 580 PWB to extract data

from interactive sessions and record it for later process-

ing or inclusion in the SEL SE data base.
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Some work has already been performed in this area at GSFC.
An Online Data Collector (ODC) has been developed, which is,

in fact, an SE-related editor (Reference 10).

3.7 PROGRAM DESIGN LANGUAGES (PDLS)

Software development is still largely a manual process.
There has been relatively little effort devoted to design
validation and analysis. Top-down, structured design has
contributed to the formulation which must precede design
automation, i.e., it must be known just what constitutes
design. Although some initial work has been done by Freeman
(Reference 11), there is still little organized knowledge of

what a software designer does.

Flow charts and baseline diagrams still remain as the prin-

ciple method for representing software designs. The machine

processable design representation of the Caine, Faber, and

Gordon Program Design Language (PDL) system is one of the

few automated design tools on the market (see Reference 12).

Once more of the design information is in machine-readable
form, more can be done to develop procedures for automatic-
ally extracting SE data for the design process. However,

it is still not clear how much can be done to formalize soft-
ware design. This is an important area which needs to be
investigated more thoroughly before significant progress can
be made towards automated collection of software design

statistics.
3.8 UTILITIES

The SEL defines a utility as any component that is generated
for the purpose of staisfying some general support function
required by other applications software. This class of
software contains programs that do not fit into any other

category in the software development life cycle.
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The SEL PDP-11/70 and VAX-11/780 both support forms of the
Peripheral Interchange Program (PIP), which is the primary
data manipulation software in the SEL. Utilities such as PIP
usually provide statistical summaries on the results of the

operations performed or could easily be modified to do so.

Other SEL utilities, such as the VAX Difference Analyzer
(DIFF), the DISKUSE utility, and the locally developed FORTRAN
cross-reference program (XREF), are examples of the type of
support software that already exist in the SEL and that could
be incorporated into an automated statistics extraction and
reporting system. In the VAX environment, the DIFF utility .
compares the contents of two disk files and creates a listing
(or file) of the records that do not match. A sample execu- -
tion of the DIFF utility is shown in Figure 3-4. The DISKUSE
utility provides data on storage requirements, sorted by
project and group. Sample output from this utility is given

in Figure 3-5.

3.9 LINKER/TASK BUILDER STATISTICS

The VAX-11/780 linker and the PDP-11/70 both provide data
on the structure and content of executable images and shared
global areas. The MAP option, when specified, generates

data on the following:

Module name

Object modules which comprise the image
Image sections

Symbols

Module address

Module lengths (size)

Line statistics

Module creation date

Language translator that created the module

Global sections referenced
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$.File 1% CFOYH, CRCTHHDL ERLFOR
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S S PR R REE S SRS ER SR E LT NNESE A REANAAEASEARER DL
FREREEY BRI XY Ay e FILE CONPFORE UTTLINY ¥
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IP3R2$23520"
: tx
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?******!l!*****ll**i%*

FILE SYILFOYN,SRCIHNDLER,.FORI3Z
18 CHARACTER TNAMEX(X) »PRNAMEX1Z
49 CHARACTER INFUT*EO0,QUTFUTXS8O,TERMIAS, TERMOYS
ES 2RSS S LS FES SIS FFE TS S
FILE SYICFDYN.FDYO3IHNDLER.FORI479
48 CHARACTER TMAMEF¥ () »FRMAMEX12Z,MBXK12
49 CHARACTER INPUT*80,0UTPUTH#Z0s TERNIYS, TERMOXT
EEPTEETEL SIS CIECELSEF S ERELEC IR TR RIS ESESELLR T YN
PSS SIS TSI SRS TASILT IV ST LSS RS ELSTRLAS S S SY
FILE SYICFDYNL,SRCIHNDLER .FOR333
S3 INTEGERY2 ITMHAF(2),ILENsJLEN, . JFLAG )
54 c
AKREKAIKEKERI KRR KRR R
FILE SYILFDRYN.FDYOZIHNULER.FORS 479
53 - INTEGER¥2 ITHHAF(2), ILEM, JLEM, JFLAG, MEXUNT s ICHAN
54
b2 S22 R S SRS LTS ERFELELS XSS SR RASSRRSEFEL S S TS P
AEEKKKKEKKKKKKKETKKKIOKRF KA I KE KRR KRR ERF KRR IR X
FILE SY!LFOYNJ.SRCIHNDLER,.FORF33

82 €

83 [ OFEN MAILEBOX UNIT

84 C

8% HAILEX = 3

84 OFPENCUNIT=MAILEX s TYFE="NEW s NMAME="MATLEOX ,DAT"
87 ¥ RECORDSIZE=1024,FORM="UNFORMATTED')
88 c

a9 c LOAD HMAILROX BUFFER

90 c

?1 BUFFER(1) = LOC

22 TUCFER(ZY = IFLAG

?3 PUFFER(3) = NARG

?4 NAKMIX = HNMLNAM

95 c

268 Do 10 I=1,12

?7 10 AUTFLEC(I) = AUTFIL(I)

73 c

99 IF{(MARG.LE.0) GO TO 30
100 c

101 c LOADl GLOBAL MAMES IM MAILROX BUFFER
102 c

103 00 20 I=1,NARS

104 BUFF(I) = BLANK

105 20 CALL XTRACT(ZVAL(DARRAY(I))»BUFF (T »KLEN)
106 c

107 30 IF(IPASS.6T.1) GO TO SO

108 c

(SR TESS SIS CECETELASIN SR 2201
FILE SY!CFOYN.FRYOZIHNULER.FORIA79

82 WRITE(&9123) KFLAG,KERROR,NUMARG

83 123 FORMAT(’ HMDLERS JFLAG,KERROR,MNUMARG = ‘»3I10)
B84 c

83 IF(IFASS.GT.1> GO TO S

8% [

KHEKAKE X RRREEROET KL ORI o E0r ORS00k
RS S St 2 IRt TS CR SR 2SN S AR RE LR L 2]

Figure 3-4. Output From the DIFF Utility
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Figure 3-5. Output From the DISKUSE Utility
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Number of virtual pages required
Base and ending addresses of program sections (PSECT)
PSECT attibutes

Library access

Symbol cross reference

COMMON block usage

Stack size

Image type

Storage requirements for image
Number of modules

Number of global symbols

Virtual memory allocated

Overlay descriptor

<

Sample link output is provided in Figure 3-6.

3.10 COMPILER STATISTICS

The FORTRAN compiler options provide many items of data per-
tinent to the data collection process. The Storage Map
section summarizes information about memory allocation, and
the Program Section Summary describes module structure. The
Entry Point Summary lists all entry points and their addresses

and identifies the section function.

The compiler listing can be used to obtain the following
data: '

Functions and subroutines called

Total memory allocated

° Program sections

° Entry points

° Variables

° Statement function
° Arrays

® Labels

®

°

°

Module names



~DBBL: [FDYN.FDYC3,PARMIPARTST,.EXE;9 9=SEP=1981 18:55 LINKER V2B.%4

femenworancevnnmnd
! IMAGE SY. 02818 !

B T TS

VIRTUAL ¥EYORY ALLOCATED: 00000200 NQ0279FF 0927800 (161792, BYTES, 316. PAGES)

STACK SIZ2E: - 20, PAGES )

IMAGE HEADER VIRTUAL BLACK LIMITS: 1, 1, ¢ 1. BLOCK)
TMAGE SINAPY VTRTUAL 8LOCK LIMITS: 7, 74. ¢ 73. BLOCKS)
TMAGT NAYE AND IRENTIFICATION: PARTST 01

- NUM3RR OF FILES: 17,

+ NUMBRR OF QMULES: 70,
NUYBER QF PRNGIAM SECTIONS: 30,
NJ¥EER OF ALOSAL SYMROLS: 1013,
NU¥BFR OF TMAGF SECTICNS: 18,
USFR TRAMSFE®? ADDRESS: 00009C00
DEIUGGFR TRANSFER ADDRESS: 80000168

. THAGE TYPE: EXECUTARLE,
HAD FORMATE DEFAULYL IN FILE ".LRC1:[FDYN,FDYO3,PARMIPARTST, MAPs1N
TSTIMATED MAP LENGTH: 117. RLNCKS

O T T e T T T

e { LIMK RUMN ST/TLSTICS !

T Y )

PERFOR¥AYCE INPICATORS PAGE FAULTS  CPU TIME ELAPSED TINE
CCMMAND PROCRSSING: o4 00:00:00.33 00:00:01.85
PASS 1t 773 00:00:03,.10 00:00:07.44
ALLOCATINN/RELOCSTION: &3 00:00:00,17 00:00:00,52
PASS 2@ 314 00:00201,95 00:00205.75
AP DATA AFTER ORJECT MQODULE SYNOPSIS: S1 00:00:02,01 00:00:02,.11
SY¥B0L TABLE QUIPUT: 10 00:00:00.04 00:00800,17

TOTAL RUVY VALUES: 1315 00:00t07,.50 00:00217.84

USING 3 WOPKTNG SET LIMITED TQ 390 PAGES AND 140 PAGES OF DATA STORAGE (FXCLUDING IMAGF)
TOTAL NUMBER 03JECT RECORDS READ (BROTH PASSES): 1458

OF WYICH 5720 WERT TW LIBRARIES AND 136 WERE DEBUG DATA RECORDS CONTAINING 4255 BYTES
3911 BYITS OF DERAUG DATA WSRE WRITTEN,STARTING AT VEN 75 WITY 8 RLOCKS ALLOCATED

RUMBER OF MODULES EXTRACTEDN EXPLICITLY = 2
WITH S3 EXTRACTED TO RFSOLVE UNDEFINFD SYMBOLS

45 LI3RaRY SEARCHES WERE FAR SYMAOLS NOT IN THE LIRRARY SEARCHED
A TOTAL OF O GLORAL SY¥BOL TABLE RRCORDS WAS WRITTFEH

/MAP/EXEC=PARTST PARTST,CGETADPD,ALLOC,CKNAMF, (FDYN,HOLDIRADMAS/APTIONS

Figure 3-6. Sample Link Statistics
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° Program section attributes
° Module size

° Compile time

Sample compiler data is shown in Figure 3-7.

3.11 DIRECTORY INFORMATION

Files maintained on the PDP-11/70 and VAX-11/780 are refer-
enced through directories. The directory for each user

contains the following information:

File protection

Size in blocks

Owner '

Date and fime created

Date and time last revised
Expiration date

File attributes

Record format.

Record attributes

File organization

Total of in-use/allocated blocks
Number of files

Version numbers

Additionally, Digital Command Language (DCL) commands and
system utilities such as SRD can be used to obtain sorted,
specialized subsets of data for a given user identification
code (UIC). A sample directory listing with the full option
is shown in Figure 3-8. The system file analyzer (SFA) can
also be used to display formatted dumps of disk files, as
shown in Figure 3-9. ’
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DIRECTORY .ORB1:(FDYN.FDY03,ALLOC]

RDDQ,FOR:12 SIZE: 4/6 CREATED: 11-JUM=1981 19308
OWNEP 212,003} REVISEN: 11-JUN=-1981 19:09 (1)
FILE IN: (1005,8,0) EXPIRES: <NONE SPECIFIED>
FILE PROTECTION: SYSTFM:RWED, OWNERIRWED, GROWP:RWE, WORLD:RE
FILE OPGANIZATION: SEOQUSNTIAL
TILE ATTRIRUTES: ALLOCATINN=6, EXTEND=0
RECORD FNRMAT: VARIABLE LENGTH
PECORD ATTRIBUTES: CARRIAGE RETURY
ALLO,FOR?S3 SIZE: 5/6 CREATED: 18=JUN=1981 17:32
NWNER: r212,003) REVISED: 18-JUN=1981 17:32 (1)
FILE ID: (1661,41,0) EXPIRES: <NONE SPECIFIED>
FILE PROTECTION: SYSTEM:RWED, OWMERSRWED, GROUP:RWE, WOPLD:RE
FILE ORGANIZATION: SEOUFNTIAL
FILE ATTRIBUTES: BLLOCATION=6, EXTEND=0
RECORD FORMAT: VARIABLE LENGTH
RECORD ATTRIBUTES: CARRTAGE RETURY
ALLOC,FOR; 119 SIZE: 25/30 CREATED: 11=JUN=1981 18123
AWNERS [212,003] REVISED: 11-JUN-=1981 18:24 (1)
FILE IDP: (1076,7,0) EXPIRES: <NONE SPECIFIED>
FILE PROTECTION: SYSTEM:RWED, OWNER!RWED, GROUP:RWE, WORLD:RE
FILE ORGANIZATION: SEQUENTIAL
FILE ATTRIBUTES! ALLOCATION=30, EXTEND=0
RECORD FARMAT: VARIABLE LENGTH
RECORD ATTRIBUTES: CARRTAGE RETURN
ALPHA,FORP1L SIZE: 1/6 CRFATED: 9=-JUL=-1981 15:34
OWNER: 212,003] REVISED: 9=-JUL=-1981 15:34 (1)
FILE ID: (1151,13,0) EXPIRES: <NONE SPECIFIED>
FILE PROTECTION: SYSTFM:RWED, OWNER:RWED, GROUPIRWED, WORLDIRE
FILE ORGANIZATION: SEQUENTIAL
FILE ATTRIBUTES! ALLOCATINN=6, EXTEND=0Q
RECQRD FORMAT: VAPIABLE LENGTH
RECORD ATTRIBUTES: CARRTAGE RETURN
AVAIL,FOR:S SIZE: 1/6 CREATED: 26-MAY=-1981 13:36
OWNER: 212,003] REVISED: 26=MAY=1981 13:36 (1)
FILE IP: (325,8,0) EXPIRES: <NQNE SPECIFIED>
FILE PROTECTION: SYSTEM:RWED, OWNER:RWED, GROUP:RWE, WORLD:PE
FILE ORGANIZATION: SEONURNTIAL
FILE ATTRIBUTES: PLTL.OCATION=6, EXTEND=0
RECORD FORMAT: VAPIABLE LENGTH
RECORD ATTRIBUTES: CAPRIAGE RETURM
BLDFIL.FOR?2 SIZE*r . 1/3 CREATED: 15=-APR=1981 13:48
NWNER: (212,003) REVISED: 15=APR=1981 14:03 (1)
FILE IP: (3661,2,0) EXPIRES: <NONE SPECIFIED>
FILE PROTECTION: SYSTEM:RWED, OWNER:RWED, GROUP:RWE, WORLD:PE
FILE ORGANIZATION: SEQUFNTIAL
TILE ATTRIBUTES:S ALLOCATINN=3, EXTEND=0
RECORD FORMAT: VARIABLE LENGTH
RECORD ATTPIRUTES: CARRIAGE RETURN
CKNAME,FNR:28 SIZE: 8712 CREATED: 11-JUN=1981 19:00 .
OWNER? 212,003 REVISED; 11-JUN=1981 19:00 (1)
FILE IP: (931,14,0) EXPIRES: <NQNE SPECIFIED
FILE POOTECTTON: SYSTFM:RWED, OWNFR:RWED, GROUP:RWE, WORLN:RE
Figure 3-8. Sample Full Directory Listing
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DUMP OF FILE?: _DRBI:IFDYN,FDVQO3,PARMIPARTST . EXE;9 ONt 9-SFP=1081 19:05:16,28

RARERRKXKRKRKKLRRARKKKKK  FOPMATTED FILE HFADER  R¥kikikopkkkgkkkkaorkkdorkonkokk

FILE NUMRER: 3947 0Fé8
FILE SEQUENCE: 3s N024
RELATIVE VOLUME NUMBFR: 0 0000
FILE HEADER CHECKSUM: 6470

FILE QWNTR: [000212,000003)
STRUCTURR LEVEL: , OD8=2

FILE EXTENSINN INFARMATINN:

FILE NUMBE®: 0 ngo00

FILE STQUENCE: 0 0000

RELATIVE VOLUME MUMBER: 0 00090

DIRECTORY BACKLINK INFORMATION!

FILE NUMRER: 7005 1BSD

PILE SFQUENCES 19 0013

RELATIVE VOLUME NUMBER: 0 0000

FILE STZF:

END OF FTILE RLACK: 82 00000052

ALLOCATED SIZE: 84 00000054

FIRST FREE BYTE: 0 0000

CREATINN DATE: 9=SFP=1981 18:55:36,95

REVISION DATE: g=5EP=1981 18:55:39,52
EXPIRATION DATE: <NANE SPECTIFTIERD>

FILE PROTECTIONS SYSTFMIRWED, OWNER:RWED, GROUP:RWE, WORLDIRE
FILE CHARACTERISTICS: CONTTGUOUS«BEST=TRY

FILE EYTFNT(S):?

STARTING LOGTCAL BLOCK NUMRER: COUNT:

(1) 257502, 0003EDDE 3. 00000053

H 3o oK 0o o ok K K e o KK R R K R ROR KRR R KR R AR RO R R R R R R KRR KRR KK

Figure 3-9. System File Analyzer Output
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3.12 FORTRAN STATIC SQURCE CODE ANALYZER PROGRAM (SAP)

The FORTRAN Static Source Code Analyzer Program (SAP) auto-
matically produces statistics on occurrences of statements

and structures within a FORTRAN program (see Reference 13.)

Statistics, as well as figures of complexity, are gathered

on a module-by-module basis. The SE data which might be

obtained through this source are summarized in Figure 3-10.

A sample of the output from SAP is shown in Figure 3-11.

L

o ‘g
!
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MODULE TYPE AND EXTERNAL COMMUNICATION

Module type (main, subroutine, function, or block data)
Number of entry points

Number of COMMON blocks referenced

Number of names in argument Tist

Number of subroutine calls

Number of subroutine names referenced

Number of functions called

Number of function name referenced

Number of external names defined

Number of externally defined modules referenced

Number of arithmetic statement functions (ASFs) defined
Number of references to ASFs

Maximum and average length of argument lists in references
to subroutines and functions

COMMENTING OF MODULE

Total number of lines of source code

Total number of comment Tines

Total number of noncomment 1ines

Length of prologue

Number of embedded comments (total/prologue)
Number of comments appearing after !

- Number of blank comment 1ines

Maximum and average length of nonprologue comment blocks

"~ Maximum and average number of lines between comments

STATEMENT BREAKDOWN

Total number of noncomment statements
Number and percentage of executable statements
Number and percentage of nonexecutable statements

Figure 3-10. Statistics From the FORTRAN Static Source

Code Analyzer Program (SAP) (1 of 6)



STATEMENT BREAKDOWN (Cont'd)

Number and percentage of assignment statements*
Number and percentage of control statements*
Number and percentage of I/0 statements*

Number and percentage of format statements*
Number and percentage of NAMELIST statements*
Number and percentage of data statements*

Number and percentage of specification statements*
Number and percentage of statement function definitions*
Number and percentage of subprogram statements*

Number and percentage of other statements

Number and percentage of undefined statements**

*As defined by IBM GC28-6515-9, IBM.S/360 and S/370 FORTRAN-IV language
**Statements not decodable by SAP

CONTROL STATEMENT BREAKDOWN

o Number of IF statements:
- Number of logical IF statements
~ Number of arighmetic IF statements

¢ Number of GO TO statements:
- Number of unconditional GO TO statements
Number of GO TO statements as object of IF statement
Number of assigned GO TO statements
Number of computed GO TO statements .
Number of different labels used as targets of GO TO statements

t

§

Number of DO statements
Number of ERR= constructs
Number of END= constructs

Number of RETURN statements:
- Number of normal RETURN statements
- Number of RETURN i statements

o Number of PAUSE statements-
® Number of STOP statements

Figure 3-10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (2 of 6)

s
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CONTROL STATEMENT BREAKDOWN (Cont'd)

Total number of branches in the code

Number of unconditional upward transfers

Number of nonFORMAT statements labeled

Number of branches to label specified in an argument 1list
Maximum and average level of DO loop nesting

Maximum and average number of statements in a DO Toop

ASSIGNMENT STATEMENT BREAKDOWN

5! e Number of assignment statements
e Maximum and average number of variables per statement
a} e Maximum and average number of operators per statement

SPECIFICATION STATEMENT BREAKDOWN

Total number of variables named in module

Number of variables referenced in executable statements
Number of variable names referenced in COMMON statements
Number of variable names referenced in EQUIVALENCE statements
Maximum and average number of dimensions for arrays

Maximum and average number of characters in variable name

SUBSCRIPT COMPLEXITY

e Maximum and average subscript complexity (i.e., number of
operators and parentheses)

MODULE TYPE STATISTICS (GLOBAL)

Total number of modules
Number of main programs
Number of subroutines

Number of function modules
Number of block data modules

Figure 3-10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (3 of 6)
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MODULE LENGTH AND COMMENTING STATISTICS (GLOBAL)

Total number of source lines

Maximum and average number of source 1ines per module

Total number of coded source lines ’

Maximum and average number of coded source lines per module
Total number of comment lines

Maximum and average number of comment lines per module
Maximum and average length of prologue .

Maximum and average number of embedded comments
Maximum and average number of inline comments
Maximum and average number of blank comment lines

Maximum and average number of coded Tines between comments

MODULE COMMUNICATIONS (GLOBAL)

Total number of entry points

Maximum and average number of entry points per module
Total number of subroutine calls

Maximum and average number of subroutine calls

Total number of function calls

Maximum and average number of function calls

Maximum and average number of external names defined

[ ———
e © o & o o © o

Maximum and average number of externally defined modules
referenced

'% e Maximum and average number of arithmetic statement functions
] (ASFs) defined

e Maximum and average number of references to ASFs

e Maximum and average length of argument 1ists in references to
subroutines and functions

STATEMENT BREAKDOWN (GLOBAL)

e Total number of noncomment statements

e Number and percentage of executable statements

} Figure 3-10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (4 of 5)
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STATEMENT BREAKDOWN (GLOBAL) (Cont'd)

Number and percentage of nonexecutable statements
Number and percentage of assignment statements*
Number and percentage of control statements*
Number and percentage of I/0 statements*

Number and percentage of format statements*
Number and percentage of NAMELIST statements*
Number and percentage of data statements*

Number and percentage of specifications statements*
Number and percentage of statement function definitions*
Number and percentage of subprogram statements

Number and percentage of other statements

Number and percentage of undecoded statements**

Ng *As defined by IBM G28-6515-9, IBM S/360 and S/370 FORTRAN-IV language
**Statements not decodable by SAP

CONTROL STATEMENT BREAKDOWN (GLOBAL)

Maximum and average number of IF statements per module
Maximum and average number of GO TO statements per module
Maximum and average number of DO statements per module
Maximum and average level of DO loop nesting

Maximum and average number of statements per DO loop

ASSIGNMENT STATEMENT BREAKDOWN (GLOBAL)

o Number of assignment statements

e Maximum and average number of variables per statement
e Maximum and average number of operators per statement

Figure 3-~10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (5 of 6)
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SPECIFICATION STATEMENT BREAKDOWN (GLOBAL)

¢ Maximum and average number of variables named per module

) i e Maximum and average number of variables referenced in
- executable statements per module

-y e Maximum and average number of variable names referenced in
'} COMMON statements per module

¢ Maximum and average number of variable names referenced in
EQUIVALENCE statements per module

e Maximum and average number of dimensions per array
o Maximum and average number of characters in a variable name

SINGLE STATEMENT COMPLEXITY

e Maximum and average subscript complexity (i.e., number of
operators and parentheses)

Figure 3-10. Statistics From the FORTRAN Static Source
Code Analyzer Program (SAP) (6 of 6)
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SECTION 4 - SEL DATA THAT CANNOT BE EXTRACTED
‘ T AUTOMATICALLY

Not all of the efforts expended during software development

can be accounted for via automated data collection. This is
primarily due to the fact that these efforts cannot be gquan-

tified or measured in any precise way. For example, during
- the implementation of even some of the simplest algorithms,
false starts frequently can be made before a waorkable solu-
"""" tion is found (i.e., much of what is done is by trial and

‘ error). Also, portions of a design may lend themselves to
easy solution, while others, because of constraints imposed
by the project or mission, may be very difficult to define.
The effort expended on these kinds of activities is not read-

f ily available for measure.

This section lists and discusses some of the items of data

currently collected via the SEL software engineering forms

which cannot be collected automatically. Table 4-1 summar-
( izes these types of data. The data generally fall into the
following categories:

° Subjective data
o o Manual processes

® Valid other activities

4.1 SUBJECTIVE DATA

® Much of the data collected from the SEL forms is subjective

in nature. For example, what constitutes a "good" run de-

pends on each individual's interpretation of what "good"

means. Another example is the use of the word "simple" to

describe software complexity. Those who understand a sec-

tion of software will tend to call the section "simple,"
whereas those who do not understand it may well call it

complex.
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Table 4-1.

SEL. Form

Data From the SEL Forms That Cannot
Be Automatically Extracted (1 of 3)

Data Item

Resource Summary

Run Analysis

Change Report

Component Status
Report

Manpower hours¥*
Other charges

Percent of management
Run purpose

Reason for change

Effect

Effort

Type of change

Code reading

Activities used for program validation

Activities successful in detecting error
symptoms ‘

Activities tried to find cause
Activities successful in finding cause
Time required to isolate the cause

When did error enter the system

Formal review

Design walk-through
Critical design reviews
Code reading

valid other activities ($$xxxxxx indi-
cates form entry name):

Acceptance testing
Filling out the SEL forms
Meetings

Training

Travel (to and from GSFC)

*Manpower hours might be obtained in the form of tapes such as
those used in the Manpower Allocation and Reporting System
(MARS) (Reference 14) or the Financial Reporting (FINREP) Pro-
gram (Reference 15). ’
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Table 4-1. Data From the SEL Forms That Cannot
Be Automatically Extracted (2 of 3)

SEL Form ; Data Item

Component Status Valid other activities (Cont'd):
Report (Cont'd) '

JCL development time
Overlay development time

M} System description development time
0 User's guide development time

°Y Discussion with analysis personnel
- ($SANALYT)

Block time ($SBLKTIM)

Discussion with other development
personnel ($$SCONSUL)

Data generation ($S$DATGEN)

Data set formats and maintanence
($SDATSET)

Demonstrations (SSDEMO)

Preparation of task implementation
plan ($$SIMPLAN)

i Discussion with task personnel
($$INTERF)

Keypunching ($$KEYPCH)
Review.GESS, IBM, or other manual

($$SMANUAL)
Write formal memoranda ($$SMEMO)
- Monthly Progress Report preparation
i ($SMNTHLY)
Design notebook preparation
($SNOTEBK)

Informal memos/instruction prepar-
ation ($$PAPERW)

Planning (not milestones) ($$PLANS)

Preparation for presentation
($SPRESNT)

Work on questions ($$SQUESTS)
Review o0ld software ($SROSW)
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Table 4-1.

SEL Form

Data From the SEL Forms That Cannot
Be Automatically Extracted (3 of 3)

Data Item

Component Status
Report (Cont'd)

Project Summary
Report

Valid other activities (Cont'd):

Review requirements/specifications
for design ($$RREQS)

Review standards/methodology
($$RSTDS)

Prepare schedules (milestones)
($$SCHEDL)

Attend seminar ($SSEMINR)
Simulation support ($$SIM)

Status meeting with management
(S$STATUS)

Generate system tape ($$SYSTAP)
Perform system testing ($$SYSTST)
Write test plan ($S$TESTPL)

Work on tool (not part of system)
($$TOOL)

Weekly Progress Report ($SWEEKLY)
Xeroxing (reproduction) ($$XEROX)

Complexity (hard, easy, moderate)

ORIGINAL PAGE !-
4-4 OF POOR QUALii ,



These types of subjective conflicts point out the need for
better metrics by which to quantify and qualify the data
being collected. Given a measure of complexity expressed

in terms of simple structured properties (such as the number
or interaétions between product and organizational elements),
normalized measures for programming effort, systems relia-
bility, productivity, and security can be devised, and mean-
ingful comparisons between different products or methodologies
can be made. Without such measures, may of the essential
parts of the developing discipline remain unconnected and
easily misunderstood. Success in developing metrics will
provide a much needed measure of consistency in the results
obtained (see Reference 16).

4.2 MANUAL PROCESSES

Another important consideration is that certain aspects of
current software development are inherently manual or non-
automated processes. The following are examples of such
manual processes: design reviews, code reading, and meetings.
Activities such as these are categorically outside of the

realm of automation.

4.3 VALID OTHER ACTIVITIES

Items which are generally categorized as "valid other activ-
ities" (for the Component Status Report) also are not amena-
ble to automation. These include activities such as travel,
review of 0ld software, review of design requirements, etc.
(see the data items for the Component Status Report in Table
4-1). However, these activities have a direct bearing and
impact on the costs and the success or failure of software

development projects, and they cannot be ignored.

ORIGINAL PAGE I
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SECTION 5 - FUNCTIONAL REQUIREMENTS

This section gives some top-level functional requirements

for an online automated data collection system. Both oper-

ational considerations and the SEL hardware environment are

factors in these requirements.

5.1 OPERATIONAL CONSIDERATIONS

If the data collection system is to accurately'measure the
o true activity of the software development process, the act
of collecting data must not significantly interfere with
development activities. Also, the performance of the oper-
ating system as a whole must not be degraded by the data
collector. With this in mind, the major design goals of

the data collector are the following:

° Transparency--The user should not be aware that he

is being monitored or that data are being collected.

° Efficiency--Both time and space utilized must be

optimized.

The efficient use of time and space and the event monitoring
- by the automated data collection system is discussed in the
following subsections.

5.1.1 TIME AND SPACE UTILIZATION

In general, there will be many events that will be monitored;

therefore, the time spent logging each event must be minimal.
Only the essential data should be collected, and it should
be possible to selectively monitor development projects.

Also, the data collection manager or system programmer must

be able to easily turn the collector on and off.

The space taken up by the data collector will have to be
minimized. It would not be feasible to develop a monitor
that would be so large that it wouldn't fit into core along

with the application it is to measure.

5-1 IGINAL PAGE 1S
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Taking these factors into account, the SEL data collector
must be designed to take the significant information about

an event (e.g., its type, the time, data unique to the event)
and store it for subsequent analysis. Since some events. will
have more data associated with them than do others, the rec-
ords of the intermediate storage file should be variable in

length in order to conserve storage space.
5.1.2 EVENT MONITORING

The data collector must be capable of monitoring three classes
of events: resource use, logical interrupts, and flow of con-
trol. The specific items monitored will vary, depending on
the software development phase (e.g., requirements, design,
coding which is active for a given project.

The resources utilized by a user are perhaps the most easily
collectible items, since they are generally available in
some form through system accounting and resource utilization
procedures. Items such as CPU time, core usage, page frame
allocation and faulting, disk usage, I/O interrupts, etc.,

need only be extracted and stored.

However, routines that normally service an event must be
capable of calculating many of the other items of interest
directly or must call existing or newly developed software
engineering tools capable of deri&ing more detailed statistics
from some basic input source. Programs such as the FORTRAN
Static Source Code Analyzer Program (SAP) and the Multi-Level
Expression Design Language - Requirements (MEDL-R) (briefly
discussed in Sections 3.11 and 3.4, respectively) are repre-

sentatives of this class of tools.

5.2 DATA COLLECTION IN THE SEL HARDWARE ENVIRONMENT

The SEL is a complex system environment in which a telecom~
munications network is attached to a computing coﬁplex con-
sisting of a DEC PDP-11/70 and VAX-11/780. The computing

5-2
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environment is under control of the VAX/VMS and RSX-11M oper-

ating systems. User-written application programs execute
upon demand from local and remote interactive terminals.

Batch processing can also be performed concurrently.

Automated data collection in this environment requires both

a definition of purpose and a methodology which can be used
to accomplish that purpose. Considerations include the
overall SEL hardware environment, system performance, com-
puting workload, and transmission speed. Because of core
limitations on the PDP-11/70, space requirements in memory
and on disk are key constraints on the approach taken to

.| automated data collection.

- The computers in the SEL environment, although developed by
5 the same manufacturer, have very distinct operating charac-
teristics and systems. Consequently, it may be necessary
to take entirely different approaches to data collection on
the two machines. This would be less desirable, however,
than a centralized data collection facility which would be
shareable between the computers through a network such as
DECnet (Reference 17). A network of this type would permit
synchronization of the system clocks and enable concurrent
data collection on the two machines with a single executive
controller. This feature is important because it would
minimize the amount of preprocessing of intermediate records
prior to their entry into the SEL data base.

5.3 SUMMARY

In developing a software engineering data collection system,
certain general requirements.regarding the data collection

environment become evident. These are summarized below.

1. The act of collecting data must be transparent to

project being monitored.

5-3  QRIGINAL PAGE I8
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The act of establishing and activating data collec-
tion interfaces must be capable of being dynamic
(as well as static) and of beinglperformed on any
ongoing process without logically interrupting that
process.

The data collection system must support the defini-
tion of event discriptors whose content defines the
conditions under which a recording of data is to be
made for later analysis. Such a descriptor might

contain the following:

a. Time
b. Project
c. Data and values

d. Level of collection

The data collection function must not be subjéct to
being disabled for that period of time for which

data collection is required for a given project.

The data collection system must support the acts of
event detection and recording of the captured data.
In a data-rich environment, the sharing of a physi-
éal resource must be transparent to an application

program (process).

The level of system support for the data collector
must be standardized across application systems and
across hardware/software systems (e.g., VAX, PDP,
IBM S/360).

The data collection terminology must be standardized

throughout the data collection environment.

The ability to logically save the most recently
recorded data prior to any purging of the data by
another process or subprocess in the system is nec-

essary.

ORIGINAL PAGE is
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10.

11.

12.

13-

14.

15.

Data identification must be provided to distinguish
data between projects. The identification of a col-
lected item must be monitored as part of the data

collection function.

.There must be compatibility with the current SEL

data base. The automated data collection should
be considered to be an adjunct to the established
data base mechanism. The format of data collected
must be designed so that existing data base formats

continue to be satisfactory.

The data collector must be able to monitor both batch

and interactive processes.

Because of the high volume of data collected in an
automated environment, procedures for maintaining
the collected data prior to integration into the
SEL data base must be established.

The ability to edit/purge selected portions of the
collected data must be provided.

Time tagging of data across projects is desirable

if the chronology of the collected data is of inter-
est. If data are time tagged, it will then be pos-
sible to develop a ‘decay function so that the most
recent data is not lost. This is essential if inter-

mediate storage for collected data is in short supply.

Shared access by multiple processes of the intermed-
iate collection file(s) is essential, since it is
likely that several users for a given project will
be active concurrently. It may be necessary to
synchronize the accessibility to project files
(enqueue/dequeue) .
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SECTION 6 - CONCLUSIONS AND RECOMMENDATIONS

Currently, the process of large-scale program development
and maintenance in the SEL is informal. Its costs are high
and its output is variable. However, it is essential to
study the process as it is evolving and to make organized,
quantized records of observations which familiarize the per-
ception of what is occurring. With such global statistics
(over the entire life cycle), it is hoped that specific
points or sources of trouble can be identified. Perhaps
areas of the development process which can be better under-
stood can also be identified. Only then can an attempt be
made to change the process without the risk of achieving
only local optimization.

In order to automatically collect statistics on software
development, it is essential that a higher degree of auto-~-
mated software development tools be developed which support
the entire software life cycle. Further, it is necessary
that formal software development procedures be established
and applied routinely to development efforts. The program-
mer workbench (discussed in Section 3.5) is a major step in
this area. Once formalized, the procedures become easier

to automate, and, therefore, data collection for all develop=-
ment phases can be realized.

It is recommended that work be started to define and develop
tools which support the entire development life cycle. Spec-
ial attention should be given to the design phase, which is
by far the most difficult to represent in a computer and is
therefore the most difficult to automate. It is further
recommended that SEL-enriched accounting software be devel-
oped and coupled with revised software engineering forms

which address the desired subjective data.
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It is not currently possible to automatically collect statis-
tics on all areas of software development, but much of the
overhead and cost related to data collection can be reduced.
By integrating data collection with a system which supports
the entire development process, more data of a higher quality
can be collected. It is hoped that this will provide a

clearer insight on how to develop quality software.
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APPENDIX A - SAMPLE SEL SOFTWARE ENGINEERING FORMS

This appendix provides examples of the software engineering
forms currently in use in the SEL. They are given in the
following order:

1. General Project Summary form
2. Component Summary form
. Resource Summary form

Component Status Report form

Computer Program Run Analysis form

.

A U W

Change Report form

ORIGINAL PAGE is
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GENERAL PROJECT SUMMARY
PROJECT NAME DATE
A. PROJECT DESCRIPTION
Description
Form of fnput
Requirements
Products Developed
Products Delivered
B. RESOURCES
Target Computer Systems Development Computer Systems
Constraints: Execution Time Size
Other :
Any Problems in Meeting Constraints?
Useful items from Similar Projects:
. Specification Design Coda
Project % Major Minor None % Major Minor None % Major Minor None
G TIME
Start Date End Date _________ Estimated Lifetime Mission Date
Confidence Level
D. Cost B
Cost $ Maximum Available $ Confidence Level
How Cost Determined i
Personnel:  Inception 1/3Way 2/3Way oo Completion
Total Person Months
Other Costs: Computer Time {hrs) Documentation $
Other { ) Other { | I
E. SIZE
Size of System Words. Data Words Instructions
Maximum Space Available Words. Confidence Level
Total Number of Source Statements: FORTRAN ALC
Other { )
Structure of System {Check One):
— Single Overlay
—— Overlay Structure (Number of Overlays Avg. Size )
< Independent Programs {Number of Programs Avg, Size )
Define Your Concept of 2 Module
Number of Modules Range in Module Size: Min. Max. Avg
Number of Different 1/0O Formats <

580-1 (2/77)

Figure A-l. General Project Summary Form (1 of 5)
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F. COMPUTER ACCESS {Check All That Apply. Who Has Access to What.)

Librarian Programmer

Keying in New Source Code
Keying in Update of Source Code
Inclusion of Code into System
Submitting Compilations

Module Testing

Integration Testing

Utility Runs (Tape Backup, Etc.)

Give Percentages for Types of Access:

Librarian Programmer

% Batch
% Interactive

G. TECHNIQUES EMPLOYED (Check All That Apply and Give Level at Which Used.)

Specification: Used Level Used Level
Functional Procedurai
R English Formal
Design:
Top Down Bottom Up
Iterative Enhance. Hardest First
. Other: : ) None Used
Development:
Top Down Bottom Up i ‘
Iterative Enhance. ‘ Hardest First | ]
Other: None Used i {
Coding:
Simutating Construct Structured Code
e Other: i None
Validation/Verification: Testing
Top Down {Stubs) Bottom Up (Drivers)
Other: Specification Driven
Structure Driven T - None
Validation/Verification: Inspection
Code Reading . Walk Through
Proof: None

H. FORMALISMS USED

Used Level Phases

POL

HIPO

Flovscharts

Baseline Diag. (Tree Ch.)

HOS

Functions

Other:

Other:

$80-1 (2/77) Continuation

Figure A-1. General Project Summary Form (2 of 5)
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1, AUTOMATED TOOLS USED

Name Phases in Which Used Level

7 J. ORGANIZATION

How are the Per: f Organized:

F Project Personnel:

Title Job Description Number Names and Affiliations {If Known)

K. STANDARDS

Type Optional Required
Title of Document

Type Optional Required
Title of Document

Type Optional Required
Title of D¢ at

- Type Optional Required
Title of Document

&

Type Optional Required
Title of Document
Type Optional . Required
Title of Document
Type Optional Required
Title of Document
Type Optional Required

Title of D

$80-1 (2/77) Continuation
Figure A-1l. General Project Summary Form (3 of 5)
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L. MILESTONES

Phase Estimated Date Contidence Level .
How Determined
Reviewers
Reporting Procedure N
Resource Expenditures: Cost ... PersonMonths ... Computer Time hrs. :
Size of System Confidence Level
Phase . Estimated Date Canfid: Level
How Determined
Reviewers
Reporting Proceduie
Resource Expenditures: Cost . Person Months Computer Tims hrs.
Size of System Confidence Level
Phase Estimated Date Confid Level
How Determined .
Reviewers
Reporting Procedure _
Resource Expenditures: Cost_______  Person Months Computer Time firs.
Size of System Confidence Level
Phase Estimated Date Confid Level
How Determined
Revi ]
Reporting Pracedure
Resource Expenditures: Cost ____.___-_ Person Months Computer Time hrs.
Size of System Confid Level
Phase Estimated Date _Confidence Level
How Determined
Reviewers
Reporting Procedure
Resource Expenditures: Cost . Person Months Computer Time hrs.
Size of System Confid Level
Phase Estimated Date Confidence Level
How Determined
Reviewers
Reporting Procedure
Rescurce Expenditures: Cost Person Months Computer Time hrs.
" Size of System Confidence Level
Phase Estimated Date Confidence Level
How Determined
Reviewers
Reporting Procedure -
Resource Expenditures: Cost . Person Months Computer Time hrs.
Size of System Confidence Level
Phase Estimated Date Canfid Level
How Determined
Reviewers
Reporting Procedure
Resource Expenditures: Cost _________ Person Months Computer Time hrs.

Size of System Confidence Level

$80-1 (2/77) Continuation

Figure A-l.

General Project Summary Form (4 of 5)
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5}

M. DOCUMENTATION

Type Purpose
Estimated Date Esti d Size Tools Used
Type Purpose
Estimated Date Estimated Size Tools Used
Type Purpose
Estimated Date . Estimated Size Tools Used
Type Purpose
Esti d Date Estimated Size ; Tools Used
Type Purposs
Estimated Date Estimated Size Tools Used
Type Purpose
Estimated Date _._. ______ Estimated Size Tools Used
Type . Purpose
Estimated Date Estimated Size Tools Used

N. PROBLEMS
Stata the three most difficult problems you expect 0 encounter in completing the projezt. (1= most difficuit}

1.

0. QUALITY ASSURANCE

State the three most important aspects of the design, development and testing of the system to which you attribute your
confidence in the completed system. {1™= most important)

1.

PERSON FILLING OUT FORM

580-1 {2/77) Continuation

Figure A-1. General Project Summary Form (5 of 5)
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COMPONENT SUMMARY

PROJECT.

DATE

NAME OF COMPONENT.
BRIEF DESCRIPTION

CREATION DATE

STATUS OF COMPONENT NEW e UNDERDEVEL e COMPLETED

TYPE OF SOFTWARE (Check All That Apply)
e /O Processing

Algorithmic

e Logic Controt

CODE SPECIFICATIONS (Check All That Apply)

Systems Related
e DATA/COMMON Black
e Othier

Component

LEVEL OF DETAIL
FORM OF DESIGN Basic Block
Compaonent Subcomponent Segment Stmt Other
Functional
Procedural
English
Formal
Other { )
Precision of Code Specification Very Precise Precise Imprecise
. INTERFACES
Number Components Called Names
Not Fully Specified o
Numiber Calling This Component Names
Not Fully Specified —
Number Shared ltems Names
Not Fully Specified ..
Number of Components Directly Descended from This Component Names
Not Fulily Specified
. PROGRAMMING LANGUAGES
Languages Used and Percentages { ) { )
CONSTRAINT PROBLEM EXPECTED: N
Constraint ~ Component Meets
Present Constraint
Memory Space
Execution Time
Other { )
Size: Source Statements {inciuding Comments) [, Machine Bytes
Source Statements (Not Including Comments)
_Useful Items From Similar Projects
Specification Design Code

Project -
% |Major | Minor

None | % {Major | Minor | None | % {Major | Minor

None

580-5 (6/78)

Figure A-2. Component Summary Form (1 of 2)
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D. COMPLEXITY

Complexity of Function Easy Moderate

Hard

% Asgsignment Statements % Control Statements

% Other Statements (e.g., Data Deci, 1/0)

E. RESOURCES TO IMPLEMENT

Runs Computer Time {min) Effort (hrs) Est. Completion Date
Design
Code
- Test
F. 1s this component independent of the existing components? Yes No
If No, describe relation of this component to the existing systern:
inserted as a lower level elaboration of higher level components (names)
added as a driver or interface for existing components {names)
a redesign (to add new capability) of existing components {names).
o a renaming of existing component {name)
regrouping of existing material from several components {names)

other

Type of Addition:

error correction

planned enhancement

——— implementation of requirements change

| improvement of clarity, maintainability, or documentation

other {explain below)

e improvement of user service

utility for development purposes only
optimization of time/space/accuracy
adaptation to environment change

G. ADDITIONAL COMMENTS

H, PERSON RESPONSIBLE FOR IMPLEMENTING COMPONENT

I. PERSON FILLING OUT FORM

580-5.(6/78)

- Figure A-2. Component Summary Form (2 of 2)
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RESOURCE SUMMARY

PROJECT . DATE___

NAME

WEEK OF:

MANPOWER (HOURS)

% OF
MGMT]

COMPUTER USAGE
(NO. RUNS/HOURS CHARGED)

OTHER CHARGES TO PROJECT

580-3 (6/78)

Figure A-3. Resource Summary Form
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COMPONENT STATUS REPORT

Figure A-4.

A-

10

Component Status Report Form
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PROJECT DATE
PROGRAMMER
DESIGN CODE DEVELOPMENT TEST QOTHER
COMPONENT
create | meap | oot | cooe | reao [FONAL | unir | iNTEG | meview |acTiviTy| HRs
Travel
Forms
Meetings
” Acc Test
Training
JoL
. Overfay
* User Guide
System Desc
' |
3
[
580-4 (6/78)




COMPUTER PROGFAM RUN ANALYSIS

DATE . £ L . .

COMPUTER

PROJECT.

PROGRAMMER

COMMENT
{e.a., Run Lost,
No Results)

RUN RESULTS

uone|dwo) o} uey

- | ‘Bsiy paresauagy sasn

10443 andax3y

Program
Error

20403 yuii
10143 3idwio)
2. 10113 318M1305
)
g i 10413 a18MpIeH
10413 .dmag Yo
-2
is Jouz Jor
loug ;g;uqns
Ve
83 uny poon
o

san103lgQ 1391 10N PIQ Uy

SaAI9(QO Ja unl

uny Isii4

COMPONENTS
OF
INTEREST

Bylo
uny 6nqaq
§ Jui/Alquiassy/apdwo)
o
g Aupin/asueuaiuiey
a.
2 3831 jdewyouag
g 1591 WaIsAg
isag uun
JAILOVHILNI
as
E]
e

A-11
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NUMBER

CHANGE REPORT FORM

PROJECT NAME CURRENT DATE

SECTION A - IDENTIFICATION
REASON: Why was the change made? .

DESCRIPTION: What change was made?

EFFECT: What components {or docurnents) are changed? {include version)

EFFORT: What additional components {(or documents) were examined in determining what change was needed? o

{(Month Day  Year)

Need for change determined on. ...

Change started on  ..........n.

What was the effort in person time required to understand and implement the change?

———Tlhourorless, __Thourtotday, ____1dayto3days,  ....more than 3 days

SECTION B - TYPE OF CHANGE (How is this change best characterized?)

O Error correction 0 Insertion/delevin of debug code
[ Planned enhancement O Optimization of time/space/accuracy
3 Implerentation of requirements change {1 Adaptation to environment change
O Improvement of clarity, maintainability, or documentation O Other {Explain in E)

. O Improvement of user services

Was more than one component affected by the change? Yes No

FOR ERROR CORRECTIONS ONLY
SECTION, C - TYPE OF ERROR (How is this error best characterized?)

3 Requirements incorrect or misinterpreted (] Misunderstand%ng of external environment, except language
[] Functional specifications incorrect or misinterpreted [ Error in use of programming language/compiler

¥ Design error, involving several components {3 Clerical error

- Error in the design or implementation of a single component [ Other (Explain in E)

FOR DESIGN OR IMPLEMENTATION ERRORS ONLY
1f the error was in design or implementation:

The error was a mistaken assumption about the value or structure of data

The error was a mistake in control logic or computation of an expression

580-2 {6/78)

Figure A-6. Change Report Form (1 of 2)
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FOR ERROR CORRECTIONS ONLY
SECTION D - VALIDATION AND REPAIR

What activities were used to validate the program, detect the error, and find its cause?

Activities Activities Activities Activities -
Used for Successful Tried to Successful
Program in Detecting Find in Finding
Validation Error Symptoms Cause Cause
Pre-acceptance test runs
Acceptance testing
-Post acceptance use
inspection of cutput 7

Code reading by programmer

Code reading by other person

Talks with other programmers

Special debug code

System error messages

Project specific error messages

Reading documentation

Trace -

Dump

Cross-reference/attribute list

Proof technique

Other {Explain in E)

What was the time used to isnlate the s3uga?

—OnE hour or loss, ...—one four to one day, ____more than one day, never found
it never found, was a workaround used?. Yes No (Explain in E)
Was this error related to a previous change?
wnre—maYes {Change Report #/Date ...} ____No Can’t tell
When did the error enter the syst.em7
w——rfequirements _._...functional specs design .___coding and test ___—other ____cant tell

SECTION E - ADDITIONAL INFORMATION

Please give any information that may be helpful in categorizing the error or change, and understanding its cause and its
ramifications. '

Name: Authorized: Data:

380-2 (6/78)

Figure A-6. Change Report Form (2 of 2)
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10.

11.

12.

REFERENCES

Basili, V. R., IEEE Computer Society, "Data Collection,
Validation and BAnalysis,"” Fall 1980

Computer Sciences Corporation, CSC/TM-81/6104, The
Software Engineering Laboratory (Preliminary), D. N.
Card, September 1981 '

Teichrow, D. and E. A. Hershey, Classics in Software
Engineering, E. N. Yourdon (editor). New York:
Yourdon Press, 1979, pp. 389-407

Computer Sciences Corporation, CSC/TM-80/6093, Multi-
Level Expression Design Language - Requirements
(MEDL-R) System Evaluation, W. Decker, May 1980

University of Michigan (ISDOS Project, Department of
Industrial and Operations Engineering), ESD-TR-78-127,
Vol. I, User's Requirements Language (URL) User's
Manual: Part I - Description, H6180/Multics/Version 3.2,
D. Teichrow, E. A. Hershy, and S. Spevak, March 1977

--, ESD-TR-78-129, Vol. II, User's Requirements Lan-
guage (URL) User's Manual: Part 11 - References, 1BM/
370/MVS/TSO/Version 3.2, D. Teichrow, E. A. Hershy,
and S. Spevak, March 1977

--, ESD-TR-78-~130, Vol. I, User's Requirements Language
(URL) User's Manual: Part I - Description, H1680/
Multics/Version 3.3, D. Teichrow, E. A. Hershy, and

S. Speval, July 1977

Computer Sciences Corporation, CSC/TM-81/6091, Software
Engineering Laboratory (SEL) Programmer Workbench
Phase I Evaluation, W. Decker, March 1981

Dolotta, T. A. and J. R. Mashay, Proceedings of the
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October 1976
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Freeman, P., IEEE Computer Society, "Tutorial on Soft-
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1976, pp. 35-63

Computer Sciences Corporation, CSC/TM-79/6263, Evalu-
ation of the Caine, Faber, and Gordon Program Design
Language (PDL) in the Goddard Space Flight Center
(GSFC) Code 580 Software Development Environment,

W. Decker, September 1979
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13.

14.

15.

16.

17.

REFERENCES (Cont'd)
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1977
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VAX User's Guide, August 1978
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